Cart (Loading....) | Create Account
Close category search window

Linear prediction methods for blind fractionally spaced equalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaohua Li ; Dept. of Electr. & Comput. Eng. & Comput. Sci., Cincinnati Univ., OH, USA ; Fan, H.

We describe adaptive methods for estimating FIR zero-forcing blind equalizers with arbitrary delay directly from the linear predictions of the observations. While most current methods require inversion or singular value decomposition (SVD) of the correlation matrix, our methods need only to solve two linear prediction problems. They can be implemented as RLS or LMS algorithms to recursively update the equalizer estimation. they are computationally efficient. The computational complexity in each recursion can be less than 15(LN)2 in the RLS case, where LN equals the equalizer length, and 3L(LN) in the LMS case, where L is the number of subchannels. The performance of the proposed methods and comparisons with existing approaches are shown by simulation to demonstrate their effectiveness

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 6 )

Date of Publication:

Jun 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.