By Topic

Blind channel identification and equalization using periodic modulation precoders: performance analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chevreuil, A. ; Lab. Syst. de Commun., Univ. de Marne-la-Vallee, France ; Serpedin, E. ; Loubaton, P. ; Giannakis, G.B.

The paper deals with blind identification and equalization of communication channels within the so-called modulation induced cyclostationarity (MIC) framework, where the input symbol stream is modulated by a P periodic precoder with the purpose of inducing cyclostationarity in the transmit sequence. By exploiting the cyclostationarity induced by the periodic precoder, a subspace-based channel identification algorithm that is resilient to the location of channel zeros, channel order overestimation errors, and color of additive stationary noise, is developed. The asymptotic performance of the subspace-based identification approach is analyzed and compared with the asymptotic lower bound provided by the nonlinear cyclic correlation matching approach. Criteria for optimally designing the periodic precoder are also presented. The performance of MMSE-FIR and MMSE-DFE equalizers is quantified for the proposed cyclostationarity-induced framework in terms of the MMSE. Although cyclostationarity-inducing transmitters present several advantages relative to their stationary counterparts from a channel estimation viewpoint, it is shown that from an equalization viewpoint, MIC-based systems exhibit a slightly increased MMSE/BER when compared with the stationary case

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 6 )