By Topic

Theoretical bounds for switching activity analysis in finite-state machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Marculescu, D. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Marculescu, R. ; Pedram, M.

The objective of this paper is to provide lower and upper bounds for the switching activity on the state lines in finite state machines (FSMs). Using a Markov chain model for the behavior of the FSM states, we derive theoretical bounds for the average Hamming distance on the state lines which are valid irrespective of the state encoding used in the final implementation. Such lower and upper bounds, in addition to providing a target for any state assignment algorithm, can also be used as parameters in a high-level power model and thus provide an early indication about the performance limits of the target FSM.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:8 ,  Issue: 3 )