By Topic

The quadruple-tank process: a multivariable laboratory process with an adjustable zero

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
K. H. Johansson ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA

A multivariable laboratory process that consists of four interconnected water tanks is presented. The linearized dynamics of the system have a multivariable zero that is possible to move along the real axis by changing a valve. The zero can be placed in both the left and the right half-plane. In this way the quadruple-tank process is ideal for illustrating many concepts in multivariable control, particularly performance limitations due to multivariable right half-plane zeros. The location and the direction of the zero have an appealing physical interpretation. Accurate models are derived from both physical and experimental data and decentralized control is demonstrated on the process

Published in:

IEEE Transactions on Control Systems Technology  (Volume:8 ,  Issue: 3 )