By Topic

1.3-/spl mu/m InAsP modulation-doped MQW lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shimizu, H. ; Furukawa Electr. Co. Ltd., Yokohama, Japan ; Kumada, K. ; Yamanaka, N. ; Iwai, N.
more authors

The effect of both n-type and p-type modulation doping on multiple-quantum-well (MQW) laser performances was studied using gas-source molecular beam epitaxy (MBE) with the object of the further improvement of long-wavelength strained MQW lasers. The obtained threshold current density was as low as 250 A/cm/sup 2/ for 1200-/spl mu/m-long devices in n-type modulation-doped MQW (MD-MQW) lasers. A very low CW threshold current of 0.9 mA was obtained in 1.3-/spl mu/m InAsP n-type MD-MQW lasers at room temperature, which is the lowest ever reported for long-wavelength lasers using n-type modulation doping, and the lowest value for lasers grown by all kinds of MBE in the long-wavelength region. Both a reduction of the threshold current and the carrier lifetime in n-type MD MQW lasers caused the reduction of the turn-on delay time by about 30%. The 1.3-/spl mu/m InAsP strained MQW lasers using n-type modulation doping with very low power consumption and small turn-on delay time are very attractive for laser array applications in high-density parallel optical interconnection systems. On the other hand, the differential gain was confirmed to increase by a factor of 1.34 for p-type MD MQW lasers (N/sub A/=5/spl times/10/sup 18/ cm/sup -3/) as compared with undoped MQW lasers, and the turn-on delay time was reduced by about 20% as compared with undoped MQW lasers. These results indicate that p-type modulation doping is suitable for high-speed lasers.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:36 ,  Issue: 6 )