By Topic

Efficiency of characterizing ellipses and ellipsoids by discrete moments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Zunic ; Fac. of Eng., Novi Sad Univ., Serbia ; N. Sladoje

In this paper, our studies are focused on ellipses and problems related to their representation and reconstruction from the data resulting from their digitization. The main result of the paper is that a finite number of discrete moments, corresponded to digital ellipses, is in one-to-one correspondence with digital ellipses, which enables coding of digital ellipses with an asymptotically optimal amount of memory. In addition, the problem of reconstruction, based on the same parameters, is considered. Since the digitization of real shapes causes an inherent loss of information about the original objects, the precision of the original shape estimation from the corresponding digital data is limited. We derive a sharp upper bound for the errors in reconstruction of the center position and half-axes of the ellipse, in function of the applied picture resolution (i.e., the number of pixels per unit). An extension of these results to the 3D case is also given

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:22 ,  Issue: 4 )