Cart (Loading....) | Create Account
Close category search window
 

Training hidden Markov models with multiple observations-a combinatorial method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaolin Li ; CADLink Technol. Corp., Ottawa, Ont., Canada ; Parizeau, M. ; Plamondon, Rejean

Hidden Markov models (HMM) are stochastic models capable of statistical learning and classification. They have been applied in speech recognition and handwriting recognition because of their great adaptability and versatility in handling sequential signals. On the other hand, as these models have a complex structure and also because the involved data sets usually contain uncertainty, it is difficult to analyze the multiple observation training problem without certain assumptions. For many years researchers have used the training equations of Levinson (1983) in speech and handwriting applications, simply assuming that all observations are independent of each other. This paper presents a formal treatment of HMM multiple observation training without imposing the above assumption. In this treatment, the multiple observation probability is expressed as a combination of individual observation probabilities without losing generality. This combinatorial method gives one more freedom in making different dependence-independence assumptions. By generalizing Baum's auxiliary function into this framework and building up an associated objective function using the Lagrange multiplier method, it is proven that the derived training equations guarantee the maximization of the objective function. Furthermore, we show that Levinson's training equations can be easily derived as a special case in this treatment

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:22 ,  Issue: 4 )

Date of Publication:

Apr 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.