By Topic

Control of grasping force by detecting stick/slip distribution at the curved surface of an elastic finger

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. Maeno ; Dept. of Mech. Eng., Keio Univ., Yokohama, Japan ; S. Hiromitsu ; T. Kawai

A method for controlling the grasping force when an object is grasped by artificial elastic fingers is proposed. First, the relationship between the stick area and the internal strain distribution of the finger is calculated using FE (finite element) analysis. Based on this relationship, a method is proposed for controlling the grasping force by decreasing the increasing ratio of the tangential force when the stick area is decreasing. Finally, the grasping force is controlled using an actual elastic finger, which is made of silicone rubber and in which strain gages are incorporated. It is confirmed that objects can be grasped using adequate grasping force without complete slippage, even when the weight and the friction coefficient of the objects are unknown

Published in:

Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Conference on  (Volume:4 )

Date of Conference: