By Topic

Clutter and jammer multipath cancellation in airborne adaptive radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
D. J. Rabideau ; Lincoln Lab., MIT, Lexington, MA, USA

Airborne surveillance radars must detect and localize targets in diverse interference environments consisting of ground clutter, conventional jamming, and terrain scattered jammer multipath. Multidimensional adaptive filtering techniques have been proposed to adaptively cancel this interference. However, a detailed analysis that includes the effects of multipath nonstationarity has been elusive. This work addresses the nonstationary nature of the jammer multipath and its impact on clutter cancellation and target localization. It is shown that the weight updating needed to track this interference will also modulate sidelobe signals. At the very least, this complicates the localization of targets. At the worst, it also greatly complicates the rejection of clutter. Several techniques for improving cancellation of jammer multipath and clutter are proposed, including 1) weight vector interpolation, extrapolation, and updating; 2) filter architecture, constraint, and beamspace selection; 3) prefilters; 4) 3-D STAP architectures; and 5) multidimensional sidelobe target editing

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:36 ,  Issue: 2 )