Cart (Loading....) | Create Account
Close category search window
 

Timed state space exploration using POSETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Belluomini, W. ; Res. Lab., IBM Corp., Austin, TX, USA ; Myers, C.J.

This paper presents a new timing analysis algorithm for efficient state space exploration during the synthesis of timed circuits or the verification of timed systems. The source of the computational complexity in the synthesis or verification of a timed system is in finding the reachable timed state space. We introduce a new algorithm which utilizes geometric regions to represent the timed state space and partially ordered sets (POSET's) to minimize the number of regions necessary. This algorithm operates on specifications sufficiently general to describe practical circuits, as well as other timed systems. The algorithm is applied to several examples showing significant improvement in runtime and memory usage

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:19 ,  Issue: 5 )

Date of Publication:

May 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.