By Topic

A monolithic 5 Gb/s p-i-n/HBT integrated photoreceiver circuit realized from chemical beam epitaxial material

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chandrasekhar, S. ; AT&T Bell Lab., Holmdel, NJ, USA ; Gnauck, A.H. ; Tsang, W.T. ; Choa, F.S.
more authors

The authors report on a high performance monolithic photoreceiver fabricated from chemical beam epitaxy (CBE) grown InP/InGaAs heterostructures, incorporating a p-i-n photodetector followed by a transimpedance preamplifier circuit configured from heterojunction bipolar transistors (HBTs). The optoelectronic integrated circuit (OEIC) was fabricated on a semi-insulating Fe-doped InP substrate. Microwave on-wafer measurements of the frequency response of the transistors yielded unity current gain cutoff frequencies of 32 GHz and maximum oscillation frequencies of 28 GHz for collector currents between 2 and 5 mA. The photoreceiver was operated up to 5 Gb/s, at which bit rate a sensitivity of -18.8 dBm was measured at a wavelength of 1.5 mu m. The results demonstrate that the CBE growth technique is suitable for high performance HBT-based OEICs.<>

Published in:

Photonics Technology Letters, IEEE  (Volume:3 ,  Issue: 9 )