Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A new zero-frequency flux-position detection approach for direct-field-oriented-control drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Consoli, A. ; Dept. of Electr., Electron. & Syst. Eng., Catania Univ., Italy ; Scarcella, G. ; Testa, A.

This paper presents a novel approach to estimate the instantaneous position of the air-gap flux in standard induction machines at low and zero speed. The proposed approach is based on the generation of a high-frequency rotating field that, interacting with the main field, generates a high-frequency zero-sequence flux component. By demodulating such a component, which is always present, irrespective of speed and load levels, it is possible to detect the air-gap flux position. The proposed method allows one to overcome some key drawbacks of sensorless approaches based on high-frequency voltage injection and, compared to previous sensorless schemes exploiting the third harmonic voltage, improves the accuracy and extends the operating area up to zero speed. Experimental tests are shown in order to practically confirm the expected features of the proposed system

Published in:

Industry Applications, IEEE Transactions on  (Volume:36 ,  Issue: 3 )