By Topic

Wing transmission for a micromechanical flying insect

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fearing, R.S. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Chiang, K.H. ; Dickinson, M.H. ; Pick, D.L.
more authors

Flapping wings provide unmatched manoeuvrability for flying microrobots. Recent advances in modelling insect aerodynamics show that adequate wing rotation at the end of the stroke is essential for generating adequate flight forces. We developed a thorax structure using four bar frames combined with an extensible fan-fold wing to provide adequate wing stroke and rotation. Flow measurements on a scale model of the beating wing show promising aerodynamics. Calculations using a simple resonant mechanical circuit model show that piezoelectric actuators can generate sufficient power, force and stroke to drive the wings at 150 Hz

Published in:

Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Conference on  (Volume:2 )

Date of Conference:

2000