By Topic

Recent progress in local and global traversability for planetary rovers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Singh, S. ; Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Simmons, R. ; Smith, T. ; Stentz, A.
more authors

Autonomous planetary rovers operating in vast unknown environments must operate efficiently because of size, power and computing limitations. Recently, we have developed a rover capable of efficient obstacle avoidance and path planning. The rover uses binocular stereo vision to sense potentially cluttered outdoor environments. Navigation is performed by a combination of several modules that each “vote” for the next best action for the robot to execute. The key distinction of our system is that it produces globally intelligent behavior with a small computational resource - all processing and decision making are done on a single processor. These algorithms have been tested on our outdoor prototype rover, Bullwinkle, and have recently driven the rover 100 m at a speed of 15 cm/sec. In this paper we report on the extension on the systems that we have previously developed that were necessary to achieve autonomous navigation in this domain

Published in:

Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Conference on  (Volume:2 )

Date of Conference:

2000