Cart (Loading....) | Create Account
Close category search window
 

Maximum-likelihood versus maximum a posteriori parameter estimation of physiological system models: the c-peptide impulse response case study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sparacino, G. ; Dipt. di Elettronica e Inf., Padova Univ., Italy ; Tombolato, C. ; Cobelli, C.

Maximum-likelihood (ML), also given its connection to least squares (LS), is widely adopted in parameter estimation of physiological system models, i.e., assigning numerical values to the unknown model parameters from the experimental data. A more sophisticated but less used approach is maximum a posteriori (MAP) estimation. Conceptually, while ML adopts a Fisherian approach, i.e., only experimental measurements are supplied to the estimator, MAP estimation is a Bayesian approach, i.e., a priori available statistical information on the unknown parameters is also exploited for their estimation. Here, after a brief review of the theory behind ML and MAP estimators, the authors compare their performance in the solution of a case study concerning the determination of the parameters of a sum of exponential model which describes the impulse response of C-peptide (CP), a key substance for reconstructing insulin secretion. The results show that MAP estimation always leads to parameter estimates with a precision (sometimes significantly) higher than that obtained through ML, at the cost of only a slightly worse fit. Thus, a 3 exponential model can be adopted to describe the CP impulse response model in place of the two exponential model usually identified in the literature by the ML/LS approach. Simulated case studies are also reported to evidence the importance of taking into account a priori information in a data poor situation, e.g., when a few or too noisy measurements are available. In conclusion, the authors' results show that, when a priori information on the unknown model parameters is available, Bayes estimation can be of relevant interest, since it can significantly improve the precision of parameter estimates with respect to Fisher estimation. This may also allow the adoption of more complex models than those determinable by a Fisherian approach.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:47 ,  Issue: 6 )

Date of Publication:

June 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.