We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Modeling the cardiac action potential using B-spline surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rogers, J.M. ; Dept. of Biomed. Eng., Alabama Univ., Birmingham, AL, USA

Presents a new method for constructing empirical, two-state-variable models of cardiac cell membrane kinetics. The formulation is based on nonuniform rational R-spline surfaces that can be manipulated interactively to produce desired action potential (AP) properties. Using this new methodology, a model of the guinea pig ventricular action potential was constructed that reproduces experimentally measured relationships between pacing cycle length and action potential duration and conduction velocity. The model is computationally efficient, requiring about sixfold less CPU time than the Beeler-Reuter ionic model and only about twice as much time as a FitzHugh-Nagumo type empirical model. Thus, for modeling propagation phenomena, this method can produce models that improve on the quantitative accuracy of both simple empirical models and elaborate ionic models, with computational cost comparable to the simplest of empirical models.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:47 ,  Issue: 6 )