Cart (Loading....) | Create Account
Close category search window
 

Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Krishnan, S. ; Dept. of Electr. & Comput. Eng., Ryerson Polytech. Univ., Toronto, Ont., Canada ; Rangayyan, R.M. ; Bell, G.D. ; Frank, C.B.

Vibroarthrographic (VAG) signals emitted by human knee joints are nonstationary and multicomponent in nature; time-frequency distributions (TFD's) provide powerful means to analyze such signals. The objective of this paper is to construct adaptive TFD's of VAG signals suitable for feature extraction. An adaptive TFD was constructed by minimum cross-entropy optimization of the TFD obtained by the matching pursuit decomposition algorithm. Parameters of VAG signals such as energy, energy spread. frequency, and frequency spread were extracted from their adaptive TFD's. The parameters carry information about the combined TF dynamics of the signals. The mean and standard deviation of the parameters were computed, and each VAG signal was represented by a set of just six features. Statistical pattern classification experiments based on logistic regression analysis of the parameters showed an overall normal/abnormal screening accuracy of 68.9% with 90 VAG signals (51 normals and 39 abnormals), and a higher accuracy of 77.5% with a database of 71 signals with 51 normals and 20 abnormals of a specific type of patellofemoral disorder. The proposed method of VAG signal analysis is independent of joint angle and clinical information, and shows good potential for noninvasive diagnosis and monitoring of patellofemoral disorders such as chondromalacia patella.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:47 ,  Issue: 6 )

Date of Publication:

June 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.