Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Uterine EMG analysis: a dynamic approach for change detection and classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khalil, M. ; Troyes Univ. of Technol., France ; Duchene, J.

Toward the goal of detecting preterm birth by characterizing events in the uterine electromyogram (EMG), the authors propose a method of detection and classification of events in this signal. Uterine EMG is considered as a nonstationary signal and the authors' approach consists of assuming piecewise stationarity and using a dynamic change detector with no a priori knowledge of the parameters of the hypotheses on the process state to be detected. The detection approach is based on the dynamic cumulative sum (DCS) of the local generalized likelihood ratios associated with a multiscale decomposition using wavelet transform. This combination of DCS and multiscale decomposition was shown to be very efficient for detection of both frequency and energy changes. An unsupervised classification based on the comparison between variance-covariance matrices computed from selected scales of the decomposition was implemented after detection. Finally a class labeling based on neural networks was developed. This algorithm of detection-classification-labeling gives satisfactory results on uterine EMG: in most cases more than 80% of the events are correctly detected and classified whatever the term of gestation.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:47 ,  Issue: 6 )