By Topic

Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. G. Macdonell ; Dept. of Inf. Sci., Otago Univ., Dunedin, New Zealand ; A. R. Gray ; G. MacLennan ; P. J. Sallis

Software forensics is the field that, by treating pieces of program source code as linguistically and stylistically analyzable entities, attempts to investigate computer program authorship. This can be performed with the goal of identification, discrimination, or characterization of authors. In this paper we extract a set of 26 standard authorship metrics from 351 programs by 7 different authors. The use of feedforward neural networks, multiple discriminant analysis, and case-based reasoning is then investigated in terms of classification accuracy for the authors on both training and testing samples. The first two techniques produce remarkably similar results, with the best results coming from the case-based reasoning models. All techniques have high prediction accuracy rates, supporting the feasibility of the task of discriminating program authors based on source-code measurements

Published in:

Neural Information Processing, 1999. Proceedings. ICONIP '99. 6th International Conference on  (Volume:1 )

Date of Conference: