By Topic

Timing analysis of combinational circuits including capacitive coupling and statistical process variation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
B. Choi ; Intel Corp., Chandler, AZ, USA ; D. M. H. Walker

Capacitive coupling between interconnects can lead to pattern-dependent delay variation. Statistical process fluctuations result in variation in gate and interconnect delays, and interconnect coupling. These effects become increasingly important in deep submicron circuits. In this work we describe a statistical timing analyzer for combinational circuits that takes these effects into account. The tool searches for input vectors that sensitize the longest path and maximizes the delay on these paths due to capacitive coupling. The best and worst-case timing on the paths is then computed using random gate delay variation and spatially-correlated interconnect parasitic variation. We demonstrate timing analysis results on a subset of the ISCAS85 circuits

Published in:

VLSI Test Symposium, 2000. Proceedings. 18th IEEE

Date of Conference:

2000