Cart (Loading....) | Create Account
Close category search window
 

A path integral time-domain method for electromagnetic scattering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nevels, R.D. ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Miller, J.A. ; Miller, R.E.

A new full wave time-domain formulation for the electromagnetic field is obtained by means of a path integral. The path integral propagator is derived via a state variable approach starting with Maxwell's differential equations in tensor form. A numerical method for evaluating the path integral is presented and numerical dispersion and stability conditions are derived and numerical error is discussed. An absorbing boundary condition is demonstrated for the one-dimensional (1-D) case. It is shown that this time domain method is characterized by the unconditional stability of the path integral equations and by its ability to propagate an electromagnetic wave at the Nyquist limit, two numerical points per wavelength. As a consequence the calculated fields are not subject to numerical dispersion. Other advantages in comparison to presently popular time-domain techniques are that it avoids time interval interleaving and it does not require the methods of linear algebra such as basis function selection or matrix methods

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:48 ,  Issue: 4 )

Date of Publication:

Apr 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.