By Topic

Gradual distributed real-coded genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Herrera, F. ; Dept. de Ciencias de la Comput. e Inteligencia Artificial, Granada Univ., Spain ; Lozano, M.

A major problem in the use of genetic algorithms is premature convergence. One approach for dealing with this problem is the distributed genetic algorithm model. Its basic idea is to keep, in parallel, several subpopulations that are processed by genetic algorithms, with each one being independent of the others. Making distinctions between the subpopulations by applying genetic algorithms with different configurations, we obtain the so-railed heterogeneous distributed genetic algorithms. These algorithms represent a promising way for introducing a correct exploration/exploitation balance in order to avoid premature convergence and reach approximate final solutions. This paper presents the gradual distributed real-coded genetic algorithms, a type of heterogeneous distributed real-coded genetic algorithms that apply a different crossover operator to each sub-population. Experimental results show that the proposals consistently outperform sequential real-coded genetic algorithms

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:4 ,  Issue: 1 )