By Topic

Adaptive detection in asynchronous code-division multiple-access system in multipath fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wen-Sheng Hou ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Bor-Sen Chen

In code-division multiple-access systems transmitting data over time-varying multipath channels, both intersymbol interference (ISI) and multiple-access interference (MAI) arise. In this paper, we address interference suppression, multipath diversity and processing gain protection for multiuser detection with less noise enhancement by using a parallel cancelling scheme. The proposed detector consists of a RAKE filter, forward filter, and feedback filter with different functions for each filter. The RAKE filter increases the signal-to-noise ratio by taking the advantage of multipath and code diversities. The forward filter is proposed, in combination with the feedback filter, to remove the effects of MAI and ISI by parallel cancellation. In order to avoid performance deterioration due to unreliable initial estimation in the parallel cancellation, a cost function with proper weighting is introduced to improve the performance of the proposed detector. In the proposed design method, a recursive least square algorithm is employed to update the tap-coefficients of all filters for MAI and ISI cancellation. Finally, the performance of the proposed detector is analyzed and compared with other detectors

Published in:

IEEE Transactions on Communications  (Volume:48 ,  Issue: 5 )