By Topic

CMA-based code acquisition scheme for DS-CDMA systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheung, P.K.P. ; Res. Sch. of Inf. Sci. & Eng., Australian Nat. Univ., Canberra, ACT, Australia ; Rapajic, P.B.

In direct-sequence code-division multiple access, a code synchronization must take place before the multiuser detector. As the initial synchronization stage, a code acquisition scheme is used to estimate the relative timing phase for the desired transmission within one chip interval. In this paper, a blind code acquisition scheme using adaptive linear filtering based on a linearly constrained constant modulus algorithm (CMA) is proposed. The uncertainty of a desired user's delay is initially discretized and translated into a number of hypotheses. The lock convergence property of CMA is exploited, where the filter at the steady state can lock onto the desired user while nulling all other interfering users (i.e., a decorrelator). For each delay hypothesis, the filter is initialized as the corresponding shifted spreading sequence of the desired user. It is shown that lock convergence always occurs for the correct hypothesis, while all incorrect hypotheses will be hovered around some saddle regions, given sufficiently small step sizes. Then, the correct hypothesis is the one which has the converged filter to yield the maximum lock onto the desired user, or a maximum output energy

Published in:

Communications, IEEE Transactions on  (Volume:48 ,  Issue: 5 )