By Topic

Optimization of sensor locations for measurement of flue gas flow in industrial ducts and stacks using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kang, H. ; Dept. of Syst. Eng., Brunel Univ., Uxbridge, UK ; Qingping Yang ; Butler, C. ; Xie, T.
more authors

This paper presents a novel application of neural network modeling in the optimization of sensor locations for the measurement of flue gas flow in industrial ducts and stacks. The proposed neural network model has been validated with an experiment based upon a case-study power plant. The results have shown that the optimized sensor location can be easily determined with this model. The industry can directly benefit from the improvement of measurement accuracy of the flue gas flow in the optimized sensor location and the reduction of manual measurement operation with Pitot tube

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:49 ,  Issue: 2 )