By Topic

Constrained subpixel target detection for remotely sensed imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chein-I Chang ; Dept. of Comput. Sci. & Electr. Eng., Maryland Univ., Baltimore, MD, USA ; Heinz, D.C.

Target detection in remotely sensed images can be conducted spatially, spectrally or both. The difficulty of detecting targets in remotely sensed images with spatial image analysis arises from the fact that the ground sampling distance is generally larger than the size of targets of interest in which case targets are embedded in a single pixel and cannot be detected spatially. Under this circumstance target detection must be carried out at subpixel level and spectral analysis offers a valuable alternative. In this paper, the problem of subpixel spectral detection of targets in remote sensing images is considered, where two constrained target detection approaches are studied and compared. One is a target abundance-constrained approach, referred to as nonnegatively constrained least squares (NCLS) method. It is a constrained least squares spectral mixture analysis method which implements a nonnegativity constraint on the abundance fractions of targets of interest. Another is a target signature-constrained approach, called constrained energy minimization (CEM) method. It constrains the desired target signature with a specific gain while minimizing effects caused by other unknown signatures. A quantitative study is conducted to analyze the advantages and disadvantages of both methods. Some suggestions are further proposed to mitigate their disadvantages

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:38 ,  Issue: 3 )