Cart (Loading....) | Create Account
Close category search window
 

A highly efficient path-restoration protocol for management of optical network transport integrity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Iraschko, R.R. ; Opt. Networks Inc., San Jose, CA, USA ; Grover, W.D.

Distributed path restoration based on optical cross-connects can provide highly capacity-efficient real-time restoration for WDM-based optical networking. However, to obtain an assured restoration level with the theoretically very low amounts of spare capacity that path restoration allows, one must solve, or closely approximate a solution to, the integer multicommodity maximum flow (MCMF) problem, MCMF is, however a hard combinatorial optimization problem due to what is called the "mutual capacity" aspects of the problem: which of many competing origin-destination pairs should be allowed paths over the finite spares on each span? Integer MCMF is further complicated by the nonunimodular nature of the problem, i.e., fractional flows are forbidden but would arise if solved by linear programming. This paper presents a heuristic principle that tests well against integer programming solutions of MCMF routing. The heuristic is first characterized in a centralized program, then adapted for use in a distributed path restoration protocol. In all test cases, the protocol obtains over 97% of the paths found in an optimal MCMF solution in the same network. Via OPNET simulation it is also predicted that the protocol will run in well under 2 seconds which means it could be used directly in real-time, or in distributed prefailure self-planning, for restoration. The significance is that network operators could aggressively optimize their spare capacity, toward theoretical minimums, while still assuring 100% restorability.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:18 ,  Issue: 5 )

Date of Publication:

May 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.