By Topic

ZPL: a machine independent programming language for parallel computers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
B. L. Chamberlain ; Dept. of Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA ; Sung-Eun Choi ; C. Lewis ; C. Lin
more authors

The goal of producing architecture-independent parallel programs is complicated by the competing need for high performance. The ZPL programming language achieves both goals by building upon an abstract parallel machine and by providing programming constructs that allow the programmer to “see” this underlying machine. This paper describes ZPL and provides a comprehensive evaluation of the language with respect to its goals of performance, portability, and programming convenience. In particular, we describe ZPt's machine-independent performance model, describe the programming benefits of ZPL's region-based constructs, summarize the compilation benefits of the language's high-level semantics, and summarize empirical evidence that ZPL has achieved both high performance and portability on diverse machines such as the IBM SP-2, Cray T3E, and SGI Power Challenge

Published in:

IEEE Transactions on Software Engineering  (Volume:26 ,  Issue: 3 )