By Topic

Enhancing consensus in multiple expert decision fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fairhurst, M.C. ; Electron. Eng. Labs., Kent Univ., Canterbury, UK ; Rahman, A.F.R.

ENCORE (Enhanced Consensus in Recognition) is a new classifier structure based on decision fusion of multiple experts (classifiers). When more than one classifier (expert) is available and it is required to combine their decisions, a fundamental aim may be to incorporate a sense of decision consensus. Alternatively, it may be considered important to ensure that appropriate weights are given to more competent classifiers. These two requirements may be mutually contradictory, as the first aims to ensure giving higher emphasis to the best decision delivered by the majority, while the second aims to ensure finding the most appropriate classifier and then giving higher weight to its decision. A new multiple expert classifier (ENCORE) is introduced which implements a decision consensus approach: but the quality of the consensus is evaluated in terms of the past track record of the consenting experts before it is accepted. The ENCORE system has been found to offer greater flexibility of performance in a character recognition task. Detailed analysis using two different databases illustrates the capabilities of this system, although the structure proposed is generic in nature, and may be readily applied to other task domains

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:147 ,  Issue: 1 )