By Topic

Efficient cost models for spatial queries using R-trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Y. Theodoridis ; Comput. Technol. Inst., Patras, Greece ; E. Stefanakis ; T. Sellis

Selection and join queries are fundamental operations in database management systems (DBMS). Support for nontraditional data, including spatial objects, in an efficient manner is of ongoing interest in database research. Toward this goal, access methods and cost models for spatial queries are necessary tools for spatial query processing and optimization. We present analytical models that estimate the cost (in terms of node and disk accesses) of selection and join queries using R-tree-based structures. The proposed formulae need no knowledge of the underlying R-tree structure(s) and are applicable to uniform-like and nonuniform data distributions. In addition, experimental results are presented which show the accuracy of the analytical estimations when compared to actual runs on both synthetic and real data sets

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:12 ,  Issue: 1 )