By Topic

Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yaochu Jin ; Future Technol. Res. Div., Honda R&D Eur. GmbH, Offenbach, Germany

Fuzzy modeling of high-dimensional systems is a challenging topic. This paper proposes an effective approach to data-based fuzzy modeling of high-dimensional systems. An initial fuzzy rule system is generated based on the conclusion that optimal fuzzy rules cover extrema. Redundant rules are removed based on a fuzzy similarity measure. Then, the structure and parameters of the fuzzy system are optimized using a genetic algorithm and the gradient method. During optimization, rules that have a very low firing strength are deleted. Finally, interpretability of the fuzzy system is improved by fine training the fuzzy rules with regularization. The resulting fuzzy system generated by this method has the following distinct features: (1) the fuzzy system is quite simplified; (2) the fuzzy system is interpretable; and (3) the dependencies between the inputs and the output are clearly shown. This method has successfully been applied to a system that has 11 inputs and one output with 20 000 training data and 80 000 test data

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:8 ,  Issue: 2 )