Cart (Loading....) | Create Account
Close category search window
 

Design of a fair bandwidth allocation policy for VBR traffic in ATM networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Biswas, S.K. ; C&C Res. Labs., NEC USA Inc., Princeton, NJ, USA ; Izmailov, R.

Since real-time variable bit rate (VBR) traffic is inherently bursty, dynamic bandwidth allocation is necessary for ATM streams that carry VBR traffic. In order to provide quality-of-services (QoS) guarantees and to reduce the computational complexity, an hybrid of guaranteed and dynamic adaptive allocation scheme requires to be implemented. Typical dynamic allocations to competing streams are done in the form of linear proportions to the bandwidth requirements. We show that during temporary link congestion such proportional arrangements can give rise to unequal queue growth and, subsequently, degraded QoS. This is found to be true even for streams that belong to the same VBR class and share identical long term traffic characteristics and QoS requirements. In this paper, four allocation algorithms are presented and analyzed in terms of their fairness and QoS potential for real-time VBR traffic. We propose and show that a novel allocation strategy, termed Minmax, solves the mentioned problem of unfairness within a class. By maintaining a fair distribution of buffer length across the streams of a class, the proposed policy can achieve better and fairer QoS performance compared to the traditional methods. We present analytical results, proofs and a simulation study of the described algorithms. Four allocation policies for handling MPEG VBR video streams are simulated in the context of a wireless ATM (WATM) medium access control. The results show that in certain scenarios, the Minmax strategy can reduce losses by an order of magnitude, while decreasing delays substantially

Published in:

Networking, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 2 )

Date of Publication:

Apr 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.