By Topic

Photo-enhanced native oxidation process for Hg/sub 0.8/Cd/sub 0.2/Te photoconductors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
S. J. Chang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Y. K. Su ; F. S. Juang ; C. T. Lin
more authors

Proposes an easy and reproducible vapor-phase photo surface treatment method to improve the device performance of the Hg/sub 0.8/Cd/sub 0.2/Te photoconductive detector. We explore the effect of surface passivation on the electrical and optical properties of the HgCdTe photoconductor. Experimental results, including surface mobility, surface carrier concentration, metal-insulator-semiconductor leakage current, 1/f noise voltage spectrum, the 1/f knee frequency, responsivity R/sub /spl lambda//, and specific detectivity D* for stacked photo surface treatment and ZnS or CdTe passivation layers are presented. These data are all directly related to the quality of the interface between the passivation layer and the HgCdTe substrate. We found that, by inserting a photo native oxide layer, we can shift the 1/f knee frequency, reduce the noise power spectrum, and achieve a lower surface recombination velocity S. A higher D* can also be achieved. It was also found that HgCdTe photoconductors passivated with stacked layers show improved interface properties compared to the photoconductors passivated only with a single ZnS or CdTe layer.

Published in:

IEEE Journal of Quantum Electronics  (Volume:36 ,  Issue: 5 )