By Topic

Optical intensity modulator based on a novel electrooptic polymer incorporating high /spl mu//spl beta/ chromophore

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Sang-Shin Lee ; Dept. of Electr. Eng.-Electrophys., Univ. of Southern California, Los Angeles, CA, USA ; S. M. Garner ; V. Chuyanov ; Hua Zhang
more authors

We have synthesized a novel electrooptic (EO) polymer based on a high /spl mu//spl beta/ chromophore incorporating tricyanobutadiene acceptors. A crosslinked polyurethane network was also adopted to enhance its thermal stability. In order to find the optimum poling condition for the polymer, the influence of the electric poling profile on optical characteristics such as the EO effect, thermal stability, and damage was investigated. Then a high-speed intensity modulator using the EO polymer was designed and fabricated. The measured half-wave voltage V/sub /spl pi// was 4.5 V at the wavelength of 1.31 /spl mu/m. Accordingly, the achieved EO coefficient r/sub 33/ was as high as 25 pm/V, and the thermal stability of the poled polymer was as high as 95/spl deg/C. Finally, the modulator was successfully operated up to 40 GHz.

Published in:

IEEE Journal of Quantum Electronics  (Volume:36 ,  Issue: 5 )