Cart (Loading....) | Create Account
Close category search window

Applications of nonlinear ultrasonics to the NDE of material degradation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kyung-Young Jhang ; Sch. of Mech. Eng., Hanyang Univ., Seoul, South Korea

Nonlinear ultrasonics is suggested as a new approach for the effective evaluation of material degradation. As its quantification, the parameter /spl beta/ is introduced on the basis of nonlinear elasticity, and a new method to measure the parameter /spl beta/ using bispectral analysis is proposed. Then, the correlation between /spl beta/ and material degradation is investigated. From the results for several mild steel (SS41, SS45) specimens that were degraded by stretching and cyclic loads, it was confirmed that the parameter /spl beta/ has a strong correlation with material degradation. As another practical application, the evaluation of the aging degradation in a high temperature material is tried. For this, Cr-Mo-V specimens that are generally used in turbine rotors in power plants were prepared, and the variation of /spl beta/ caused by aging time was investigated. For comparison, the fracture appearance transition temperature (FATT) of the specimen was measured, and its behavior showed good agreement with /spl beta/. In addition, for all of the experiments, no noticeable change in attenuation and sound velocity in the same specimens with change of degradation were observed. From these results, it may be concluded that nonlinear ultrasonics could be applied to the quantitative evaluation of material degradation.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:47 ,  Issue: 3 )

Date of Publication:

May 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.