By Topic

Scattering of GPS signals from the ocean with wind remote sensing application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zavorotny, V.U. ; Cooperative Inst. for Res. in Environ. Sci., Colorado Univ., Boulder, CO, USA ; Voronovich, A.G.

A theoretical model that describes the power of a scattered Global Positioning System (GPS) signal as a function of geometrical and environmental parameters has been developed. This model is based on a bistatic radar equation derived using the geometric optics limit of the Kirchhoff approximation. The waveform (i.e., the time-delayed power obtained in the delay-mapping technique) depends on a wave-slope probability density function, which in turn depends on wind. Waveforms obtained for aircraft altitudes and velocities indicate that altitudes within the interval 5-15 km are the best for inferring wind speed. In some regimes, an analytical solution for the bistatic radar equation is possible. This solution allows converting trailing edges of waveforms into a set of straight lines, which could be convenient for wind retrieval. A transition to satellite altitudes, together with satellite velocities, makes the peak power reduction and the Doppler spreading effect a significant problem for wind retrieval based on the delay-mapping technique. At the same time, different time delays and different Doppler shifts of the scattered GPS signal could form relatively small spatial cells on sea surface, suggesting mapping of the wave-slope probability distribution in a synthetic-aperture-radar (SAR) fashion. This may allow more accurate measurements of wind velocity and wind direction

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:38 ,  Issue: 2 )