By Topic

Electromagnetic scattering from short branching vegetation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsenchieh Chiu ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Sarabandi, K.

A polarimetric coherent electromagnetic scattering model for short branching vegetation is developed. With the realistic structures that reasonably describe the relative positions of the particles, this model is able to consider the coherent effect due to the phase difference between the scattered fields from different particles, and account for the second-order, near-field interaction between particles, to which the relative positions and orientation of the particles are essential. The model validation with measurements is also presented, and excellent agreement is obtained. The polarimetric radar backscatter measurements for soybean plants using truck-mounted scatterometers were conducted at L-band and C-band under different soil-moisture conditions. Through an extensive ground truth, the important plant and rough surface parameters such as the soil moisture and surface roughness, vegetation dielectric constant, and geometry of the soybean plants, were characterized for model verification. It is found that the second-order near-field scattering is significant at C-band for fully grown soybeans due to the high vegetation particle density, and at L-band, the contribution from the second-order near field is negligible. The coherence effect is shown to be important at L-band and to a much lesser extent at C-band. This model is then used to demonstrate its ability for estimating the physical parameters of a soybean field, including soil moisture from a polarimetric set of AIRSAR images

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:38 ,  Issue: 2 )