By Topic

On spatial quantization of color images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Puzicha, J. ; Dept. of Comput. Sci. III, Rheinische Friedrich-Wilhelms-Univ., Bonn, Germany ; Held, M. ; Ketterer, J. ; Buhmann, J.M.
more authors

Image quantization and digital halftoning, two fundamental image processing problems, are generally performed sequentially and, in most cases, independent of each other. Color reduction with a pixel-wise defined distortion measure and the halftoning process with its local averaging neighborhood typically optimize different quality criteria or, frequently, follow a heuristic approach without reference to any quantitative quality measure. In this paper, we propose a new model to simultaneously quantize and halftone color images. The method is based on a rigorous cost-function approach which optimizes a quality criterion derived from a simplified model of human perception. It incorporates spatial and contextual information into the quantization and thus overcomes the artificial separation of quantization and halftoning. Optimization is performed by an efficient multiscale procedure which substantially alleviates the computational burden. The quality criterion and the optimization algorithms are evaluated on a representative set of artificial and real-world images showing a significant image quality improvement compared to standard color reduction approaches. Applying the developed cost function, we also suggest a new distortion measure for evaluating the overall quality of color reduction schemes

Published in:

Image Processing, IEEE Transactions on  (Volume:9 ,  Issue: 4 )