By Topic

Image quality assessment based on a degradation model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
N. Damera-Venkata ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA ; T. D. Kite ; W. S. Geisler ; B. L. Evans
more authors

We model a degraded image as an original image that has been subject to linear frequency distortion and additive noise injection. Since the psychovisual effects of frequency distortion and noise injection are independent, we decouple these two sources of degradation and measure their effect on the human visual system. We develop a distortion measure (DM) of the effect of frequency distortion, and a noise quality measure (NQM) of the effect of additive noise. The NQM, which is based on Peli's (1990) contrast pyramid, takes into account the following: 1) variation in contrast sensitivity with distance, image dimensions, and spatial frequency; 2) variation in the local luminance mean; 3) contrast interaction between spatial frequencies; 4) contrast masking effects. For additive noise, we demonstrate that the nonlinear NQM is a better measure of visual quality than peak signal-to noise ratio (PSNR) and linear quality measures. We compute the DM in three steps. First, we find the frequency distortion in the degraded image. Second, we compute the deviation of this frequency distortion from an allpass response of unity gain (no distortion). Finally, we weight the deviation by a model of the frequency response of the human visual system and integrate over the visible frequencies. We demonstrate how to decouple distortion and additive noise degradation in a practical image restoration system

Published in:

IEEE Transactions on Image Processing  (Volume:9 ,  Issue: 4 )