By Topic

Adaptively regularized constrained total least-squares image restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wufan Chen ; Dept. of Biomed. Eng., First Military Med. Univ., Guangzhou, China ; Ming Chen ; Jie Zhou

In this paper, a novel algorithm for image restoration is proposed based on constrained total least-squares (CTLS) estimation, that is, adaptively regularized CTLS (ARCTLS). It is well known that in the regularized CTLS (RCTLS) method, selecting a proper regularization parameter is very difficult. For solving this problem, we take the first-order partial derivative of the classic equation of RCTLS image restoration and do some simplification with it. Then, we deduce an approximate formula, which can be used to adaptively calculate the best regularization parameter along with the degraded image to be restored. We proved that the convergence and the stability of the solution could be well satisfied. The results of our experiments indicate that using this method can make an arbitrary initial parameter be an optimal one, which results in a good restored image of high quality

Published in:

IEEE Transactions on Image Processing  (Volume:9 ,  Issue: 4 )