By Topic

Learning and design of principal curves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
B. Kegl ; Dept. of Math. & Stat., Queen's Univ., Kingston, Ont., Canada ; A. Krzyzak ; T. Linder ; K. Zeger

Principal curves have been defined as “self-consistent” smooth curves which pass through the “middle” of a d-dimensional probability distribution or data cloud. They give a summary of the data and also serve as an efficient feature extraction tool. We take a new approach by defining principal curves as continuous curves of a given length which minimize the expected squared distance between the curve and points of the space randomly chosen according to a given distribution. The new definition makes it possible to theoretically analyze principal curve learning from training data and it also leads to a new practical construction. Our theoretical learning scheme chooses a curve from a class of polygonal lines with k segments and with a given total length to minimize the average squared distance over n training points drawn independently. Convergence properties of this learning scheme are analyzed and a practical version of this theoretical algorithm is implemented. In each iteration of the algorithm, a new vertex is added to the polygonal line and the positions of the vertices are updated so that they minimize a penalized squared distance criterion. Simulation results demonstrate that the new algorithm compares favorably with previous methods, both in terms of performance and computational complexity, and is more robust to varying data models

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:22 ,  Issue: 3 )