By Topic

Geodesic active contours and level sets for the detection and tracking of moving objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. Paragios ; Dept. of Imaging & Visualization, Siemens Corp. Res. Inc., Princeton, NJ, USA ; R. Deriche

This paper presents a new variational framework for detecting and tracking multiple moving objects in image sequences. Motion detection is performed using a statistical framework for which the observed interframe difference density function is approximated using a mixture model. This model is composed of two components, namely, the static (background) and the mobile (moving objects) one. Both components are zero-mean and obey Laplacian or Gaussian law. This statistical framework is used to provide the motion detection boundaries. Additionally, the original frame is used to provide the moving object boundaries. Then, the detection and the tracking problem are addressed in a common framework that employs a geodesic active contour objective function. This function is minimized using a gradient descent method. A new approach named Hermes is proposed, which exploits aspects from the well-known front propagation algorithms and compares favorably to them. Very promising experimental results are provided using real video sequences

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:22 ,  Issue: 3 )