Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Near-optimal broadcast in all-port wormhole-routed hypercubes using error-correcting codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ko, H. ; Dept. of Electr. Eng., Nevada Univ., Las Vegas, NV, USA ; Latifi, S. ; Srimani, P.K.

A new broadcasting method is presented for hypercubes with wormhole routing mechanism. The communication model assumed allows an n-dimensional hypercube to have at most n concurrent 110 communications along its ports. It further assumes a distance insensitivity of (n+1) with no intermediate reception capability for the nodes along the communication path. The approach is based on determination of the set of nodes (called stations) in the hypercube such that for any node in the network there is a station at distance of at most 1. Once stations are identified, parallel disjoint paths are formed from the source to all stations. The broadcasting is accomplished first by sending the message to all stations which will in turn inform the rest of the nodes of the message. To establish node-disjoint paths between the source node and all stations, we introduce a new routing strategy. We prove that multicasting can be done in one routing step as long as the number of destination nodes are at most n in an n-dimensional hypercube. The number of broadcasting steps using our routing is equal to or smaller than that obtained in an earlier work; this number is optimal for all hypercube dimensions n⩽12, except for n=10

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:11 ,  Issue: 3 )