By Topic

The merits and limitations of local impact ionization theory [APDs]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Plimmer, S.A. ; Dept. of Electron. & Electr. Eng., Sheffield Univ., UK ; David, J.P.R. ; Ong, D.S.

Multiplication measurements on GaAs p+-i-n+s with i-region thicknesses, w, between 1 μm and 0.025 μm and Monte Carlo (MC) calculations of the avalanche process are used to investigate the applicability of the local ionization theory. The local expressions for multiplication are able to predict the measured values surprisingly well in p+-i-n+s with i-region thicknesses, w, as thin as 0.2 μm before the effect of dead-space, where carriers have insufficient energy to ionize, causes significant errors. Moreover, only a very simple correction to the local expressions is needed to predict the multiplication accurately where the field varies rapidly in abrupt one-sided p+-n junctions doped up to 1018 cm-3. However, MC modeling also shows that complex dead-space effects cause the local ionization coefficients to be increasingly unrepresentative of the position dependent values in the device as w is reduced below 1 μm. The success of the local model in predicting multiplication is therefore attributed to the dead-space information already being contained within the experimentally determined values of local coefficients. It is suggested that these should therefore be thought of as effective coefficients which, despite the presence of dead-space effects, can be still be used with the existing local theory for efficiently quantifying multiplication and breakdown voltages

Published in:

Electron Devices, IEEE Transactions on  (Volume:47 ,  Issue: 5 )