By Topic

Some bounds for the minimum length of binary linear codes of dimension nine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bouyukliev, I. ; Inst. of Math., Bulgarian Acad. of Sci., Tarnovo, Bulgaria ; Guritman, S. ; Vavrek, V.

We prove the nonexistence of binary [69,9,32] codes and construct codes with parameters [76,9,34],[297,9,146], and [300,9,148]. These results show that n(9,32)=70, n(9,34)⩽76,n(9,146)=297, and n(9,148)=300, where n(k,d) denotes the smallest value of n for which there exists an [n,k,d] binary code. We also present some codes of minimum distance 32 and some related codes

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 3 )