We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Simulated annealing for maximum a posteriori parameter estimation of hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Andrieu, C. ; Dept. of Eng., Cambridge Univ., UK ; Doucet, Arnaud

Hidden Markov models are mixture models in which the populations from one observation to the next are selected according to an unobserved finite state-space Markov chain. Given a realization of the observation process, our aim is to estimate both the parameters of the Markov chain and of the mixture model in a Bayesian framework. We present an original simulated annealing algorithm which, in the same way as the EM (expectation-maximization) algorithm, relies on data augmentation, and is based on stochastic simulation of the hidden Markov chain. This algorithm is shown to converge toward the set of maximum a posteriori (MAP) parameters under suitable regularity conditions

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 3 )