By Topic

An assessment and comparison of common software cost estimation modeling techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Briand, L.C. ; Fraunhofer Inst. for Exp. Software Eng., Kaiserlautern, Germany ; El Emam, K. ; Surmann, D. ; Wieczorek, I.
more authors

This paper investigates two essential questions related to data-driven, software cost modeling: (1) What modeling techniques are likely to yield more accurate results when using typical software development cost data? and (2) What are the benefits and drawbacks of using organization-specific data as compared to multi-organization databases? The former question is important in guiding software cost analysts in their choice of the right type of modeling technique, if at all possible. In order to address this issue, we assess and compare a selection of common cost modeling techniques fulfilling a number of important criteria using a large multi-organizational database in the business application domain. Namely, these are: ordinary least squares regression, stepwise ANOVA, CART, and analogy. The latter question is important in order to assess the feasibility of using multi-organization cost databases to build cost models and the benefits gained from local, company-specific data collection and modeling. As a large subset of the data in the multi-company database came from one organization, we were able to investigate this issue by comparing organization-specific models with models based on multi-organization data. Results show that the performances of the modeling techniques considered were not significantly different, with the exception of the analogy-based models which appear to be less accurate. Surprisingly, when using standard cost factors (e.g., COCOMO-like factors, Function Points), organization specific models did not yield better results than generic, multi-organization models.

Published in:

Software Engineering, 1999. Proceedings of the 1999 International Conference on

Date of Conference:

22-22 May 1999