By Topic

Speaker adaptations in sparse training data for improved speaker verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sungjoo Ahn ; Dept. of Electron. Eng., Korea Univ., Seoul, South Korea ; Hanseok Ko

The over-training problem in speaker verification occurs when modelling a speaker with sparse training data. The authors propose to solve this problem by employing effective speaker adaptations using a hybrid version of the maximum a posteriori (MAP) and maximum likelihood linear regression (MLLR) methods. Experimental results show that the speaker verification system using the proposed hybrid adaptation scheme outperforms systems based on speaker models without adaptation by a factor of up to 5

Published in:

Electronics Letters  (Volume:36 ,  Issue: 4 )