By Topic

Predictive schemes for handoff prioritization in cellular networks based on mobile positioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ming-Hsing Chiu ; Dept. of Comput. Sci., New Orleans Univ., LA, USA ; Bassiouni, M.A.

We propose and evaluate new schemes for channel reservation motivated by the rapidly evolving technology of mobile positioning. The schemes, called predictive channel reservation (PCR), work by sending reservation requests to neighboring cells based on extrapolating the motion of mobile stations (MSs). A number of design enhancements are incorporated to minimize the effect of false reservations and to improve the throughput of the cellular system. These enhancements include: (1) reservation pooling; (2) queuing of reservation requests; (3) hybrid approach for integrating guard channels (GCs); and (4) using a threshold distance (TD) to control the timing of reservation requests. The design enhancements have produced a set of highly efficient schemes that achieve significant reduction in handoff blocking rates while only incurring remarkably small increases in the new call blocking rates. The PCR approach has also been used to solve the MINBLOCK optimization problem and has given significant improvement over the fractional guard channel (FGC) protocol. Detailed performance results of the different variations of the PCR scheme and comparisons with conventional channel reservation schemes are presented. An analytical Markov model for the hybrid predictive version of the scheme is developed and its applicability and numerical results are discussed.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:18 ,  Issue: 3 )