By Topic

Design of orthogonal pulse shapes for communications via semidefinite programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Davidson, T.N. ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Ont., Canada ; Zhi-Quan Luo ; Kon Max Wong

In digital communications, orthogonal pulse shapes are often used to represent message symbols for transmission through a channel. In this paper, the design of such pulse shapes is formulated as a convex semidefinite programming problem, from which a globally optimal pulse shape can be efficiently found. The formulation is used to design filters that achieve (a) the minimal bandwidth for a given filter length; (b) the minimal filter length for a given bandwidth; (c) the maximal robustness to timing error for a given bandwidth and filter length. Bandwidth is measured either in spectral energy concentration terms or with respect to a spectral mask. The effectiveness of the method is demonstrated by the design of waveforms with substantially improved performance over the “chip” waveforms specified in standards for digital mobile telecommunications

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 5 )